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Abstract

This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic

deformations and mechanical loads, and describes electromagnetoelastic responses and perturbation of the magnetic

field vector in a piezoelectric hollow cylinder subjected to sudden mechanical load and electric potential. An interpo-

lation method is applied to solve the Volterra integral equation of the second kind caused by interactions between

different physical fields. By means of finite integral transforms, Laplace transforms, and their inverse transforms, the

exact expressions for the dynamic responses of stresses, electric displacements, electric potentials and perturbation

response of an axial magnetic field vector in the piezoelectric hollow cylinders are obtained. The present method is

suitable for piezoelectric hollow cylinders in an axial magnetic field, subjected to arbitrary mechanical loads and

electrical potential shocks. Finally, numerical results are carried out and discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The interaction of electric potentials, electric displacements and elastic deformations in structures is
studied due to its many engineering applications in the fields of magnetic storage elements, magnetic

structural elements, plasma physics and the corresponding measurement techniques of magnetoelasticity.

The coupling of elastic deformation, electric field and magnetic field gives rise to the theory of dynamic

coupled electromagnetomechanics, which is known to be especially suitable in the high frequency and short

wave-length modes described by Eringen (2003). Shul’ga et al. (1984) investigated the axisymmetric elec-

troelastic waves in a hollow piezoelectric ceramic cylinder by using a method based on representation of the

solution in the form of powers of the radial coordinate, and gave an analysis of dispersion relations and the
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Nomenclature

U
*

, ur displacement vector and radial displacement [m]

cij, eij, eij elastic constants [N/m2], piezoelectric constants [C/m2] and dielectric constants [C2/Nm2]

rij, Drr the component of stresses [N/m2] and radial electric displacement [C/m2]

wðr; tÞ electric potential [W/A]

fzz Lorentz’s force [kg/m2 s2]

q, t mass density [kg/m3] and time [s]

r radius [m]

a, b inner and outer radii of piezoelectric hollow cylinder [m]
l magnetic permeability [H/m]

H
*

magnetic intensity vector ð0; 0;HzÞ
h
*

perturbation of magnetic field vector ð0; 0; hzÞ
J
*

electric current density vector

e
*

perturbation of electric field vector

CL electromagnetoelastic wave speed [m/s]

x the inherent frequency of the hollow cylinder [1/s].

5232 H.L. Dai, X. Wang / International Journal of Solids and Structures 41 (2004) 5231–5246
effect of the piezoelectric effect on dynamic characteristics of the waveguide. Chand et al. (1990) presented
the investigations of the distribution of deformation, temperature, stresses and magnetic field in a homo-

geneous isotropic, thermally and electrically conducting, uniformly rotating elastic half-space, in contact

with vacuum, due to impulsive load at the plane boundary, utilizing the generalized theory of thermo-

elasticity. Dhaliwal and Saxena (1991) applied generalized elasticity theory to solve the problem of mag-

netothermoelastic waves produced by thermal shock in an infinite elastic solid with a cylindrical cavity,

obtained approximate small-time solutions in some cases, and gave numerical results for displacement,

temperature, and stresses. Sherief and Ezzat (1996) used the Laplace transform technique to find the dis-

tribution of thermal stresses and temperature in a generally thermoelastic and electrically conducting half-
space under sudden thermal shock and permeated by a primarily uniform magnetic field. Solodyak and

Gachkevich (1996) presented an analytical method for obtaining electromagnetic and temperature fields as

well as mechanical stresses in a ferromagnetic solid subjected to a harmonic electromagnetic field at the

frequencies usually used in industry. The free vibrations of piezoelectric, empty and also compressible fluid

filled cylindrical shells as three-dimensional problems were studied by Ding et al. (1997) using triangle

series. Ezzat (1997) described the distribution of thermal stresses and temperature in a perfectly conducting

half-space when suddenly heated to a constant temperature, and compared that with the results obtained in

the absence of a magnetic field by using the method of potentials and Laplace transform techniques. The
technique of finite integral transforms is presented in Wang and Lu (2002) to analyse magnetothermoelastic

waves and perturbation of the magnetic field vector produced by thermal shock in a solid conducting

cylinder, and the focusing effect on both magnetothermostress and perturbation of the axial magnetic field

vector was revealed in the paper. By virtue of the variable separation technique and the interpolation

method, Ding et al. (2003) investigated the axisymmetric plane strain electroelastic dynamic problem of a

hollow cylinder, and presented the numerical results for the displacements, stresses, electric displacements

and electric potentials. To date, investigations on the dynamic response of coupled fields have mostly

considered magnetothermoelasticity and electroelasticity. The investigations on the dynamic responses of
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the coupling of three physical fields for electricity, magnet and elastic deformation have been limited be-

cause of its complexity.

In the paper, an analytical method is developed for solving the dynamic responses of piezoelectric hollow

cylinders in an axial magnetic field, subjected to sudden mechanical load and electric potential shock. First,
the electromagnetodynamic equilibrium equation for an orthotropic piezoelectric hollow cylinder is de-

rived. Second, the electromagnetodynamic equilibrium equation is decomposed into a homogeneous quasi-

static equation, which satisfies the inhomogeneous boundary conditions, and an inhomogeneous dynamic

solution, which satisfies homogeneous boundary conditions. By using the method described in Lekhniskii

(1981), the solution for the homogeneous quasi-static equation which satisfies the inhomogeneous

boundary conditions is obtained. After using an interpolation method to solve the Volterra integral

equation of the second kind caused by interactions, the solution for the inhomogeneous dynamic solution

which satisfies homogeneous boundary conditions can be obtained by means of the finite Hankel trans-
forms (Cinelli, 1965), the Laplace transforms, and their inverse transforms. Thus, the solution for the

dynamic responses of piezoelectric hollow cylinders, in an axial magnetic field, subjected to sudden

mechanical load and electric potential is rigorously derived.

Finally, some practical examples are calculated. The histories and distributions of the dynamic stresses,

the electric displacement, the electric potential and the perturbation of magnetic field vector are carried out.

The feature of the solution is related to the propagation of the cylindrical wave. The interactions among the

dynamic stress, the electric displacement, the electric potential and the perturbation of magnetic field vector

are carried out and discussed.
2. Statement of the problem and basic formulations

A long, piezoelectric hollow cylinder placed initially in an axial magnetic field H
*

ð0; 0;HzÞ is shown in

Fig. 1. For the axisymmetic plane strain problem, the components of displacement and electric potential in

the cylindrical coordinate ðr; h; zÞ system are expressed as uh ¼ 0, uz ¼ 0, ur ¼ urðr; tÞ and w ¼ wðr; tÞ,
Z

HZ

 

 

r=b

r=a
 

Fig. 1. A long piezoelectric hollow cylinder in an axial magnetic field.
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respectively. The constitutive equations of orthotropic, radially polarized piezoelectric material are

expressed as
rrr ¼ crr
our
or

þ crh
ur
r
þ err

ow
or

ð1aÞ

rhh ¼ crh
our
or

þ chh
ur
r
þ erh

ow
or

ð1bÞ

rzz ¼ crz
our
or

þ chz
ur
r
þ erz

ow
or

ð1cÞ

Drr ¼ err
our
or

þ erh
ur
r
� err

ow
or

ð1dÞ
where cij, eij and eij are elastic constants, piezoelectric constants and dielectric constants in cylindrical

coordinate ðr; h; zÞ system, respectively. rij and Drr are the components of stress and radial electric dis-

placement, respectively.

The boundary conditions are
rrrða; tÞ ¼ Pa0ðtÞ rrrðb; tÞ ¼ Pb0ðtÞ ð2aÞ

wða; tÞ ¼ waðtÞ wðb; tÞ ¼ wbðtÞ ð2bÞ
Assuming that the magnetic permeability, l, (Ezzat, 1997) of the piezoelectric hollow cylinder equals the

magnetic permeability of the medium around it, the governing electrodynamic Maxwell equations (John,

1984) are given by
J ¼ r� �h; r� �e ¼ �l
o�h
ot

; div�h ¼ 0;

�e ¼ �l U
oU
ot

�
� H

�
�h ¼ r� ðU � HÞ ð3Þ
Applying an initial magnetic field vector H
*

ð0; 0;HzÞ in cylindrical coordinate ðr; h; zÞ system to Eq. (3),

yields
U ¼ ðurðr; tÞ; 0; 0Þ; �e ¼ �l 0;Hz
our
ot

; 0

� �
; ð4aÞ

�h ¼ ð0; 0; hzÞ; J ¼ 0;

�
� ohz

or
; 0

�
; hz ¼ �Hz

our
or

�
þ ur

r

�
ð4bÞ
The electomagnetic dynamic equilibrium equation of the piezoelectric hollow cylinder is expressed as
orrr

or
þ rrr � rhh

r
þ fzz ¼ q

o2ur
ot2

ð5Þ
where q is the mass density, fzz is defined as Lorentz’s force (John, 1984), which can be written as
fzz ¼ lðJ � HÞ ¼ lH 2
z

o

or
our
or

�
þ ur

r

�
ð6Þ
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In order to simplify calculation, the non-dimensional forms are given by
c1 ¼
crh
crr

; c2 ¼
chh
crr

; c3 ¼
crz
crr

; c4 ¼
chz
crr

; e1 ¼
errffiffiffiffiffiffiffiffiffiffi
crrerr

p

e2 ¼
erhffiffiffiffiffiffiffiffiffiffi
crrerr

p ; e3 ¼
erzffiffiffiffiffiffiffiffiffiffi
crrerr

p ; ri ¼
rii

crr
ði ¼ r; h; zÞ; / ¼

ffiffiffiffiffi
err
crr

r
w
b

Dr ¼
Drrffiffiffiffiffiffiffiffiffiffi
crrerr

p ; u ¼ ur
b
; n ¼ r

b
; s ¼ a

b
; CV ¼

ffiffiffiffiffi
crr
q

r
; s ¼ CVt

b
; fz ¼

fzz
crr

b

PaðsÞ ¼
Pa0ðtÞ
crr

; PbðsÞ ¼
Pb0ðtÞ
crr

; /a ¼
ffiffiffiffiffi
err
crr

r
wa

b
; /b ¼

ffiffiffiffiffi
err
crr

r
wb

b

ð7Þ
Then, Eqs. (1) and (5) can be rewritten as follows:
rr ¼
ou
on

þ c1
u
n
þ e1

o/
on

ð8aÞ

rh ¼ c1
ou
on

þ c2
u
n
þ e2

o/
on

ð8bÞ

rz ¼ c3
ou
on

þ c4
u
n
þ e3

o/
on

ð8cÞ

Dr ¼ e1
ou
on

þ e2
u
n
� o/

on
ð8dÞ

orr

on
þ rr � rh

n
þ fz ¼

o2u
os2

ð8eÞ

fz ¼
lH 2

z

crr

o

on
ou
on

�
þ u
n

�
ð8fÞ
In absence of free charge density, the charge equation of electrostatics (Heyliger, 1996) is expressed as
1

n
o

on
ðnDrðn; sÞÞ ¼ 0 ð9Þ
Solving Eq. (9), gives
Drðn; sÞ ¼
1

n
dðsÞ ð10Þ
The corresponding boundary conditions and the initial conditions are expressed as
rrðs; sÞ ¼ PaðsÞ rrð1; sÞ ¼ PbðsÞ ð11aÞ

/ðs; sÞ ¼ /aðsÞ /ð1; sÞ ¼ /bðsÞ ð11bÞ

s ¼ 0 uðn; 0Þ ¼ u0ðnÞ _uðn; sÞ ¼ v0ðnÞ ð11cÞ
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3. Solution of the problem

Substituting Eq. (10) into Eq. (8d), yields
o/
on

¼ e1
ou
on

þ e2
u
n
� 1

n
dðsÞ ð12Þ
Substituting Eq. (12) into Eqs. (8a) and (8b), gives
rr ¼ ð1þ e21Þ
ou
on

þ ðc1 þ e1e2Þ
u
n
� e1

n
dðsÞ ð13aÞ

rh ¼ ðc1 þ e1e2Þ
ou
on

þ ðc2 þ e22Þ
u
n
� e2

n
dðsÞ ð13bÞ
Substituting Eq. (13) into Eq. (8e), the electromagnetodisplacement equilibrium equation is expressed as
o2uðn; sÞ
on2

þ 1

n
ouðn; sÞ

on
� H 2uðn; sÞ

n2
¼ 1

C2
L

o2uðn; sÞ
os2

þ m
dðsÞ
n2

ð14Þ
where
H 2 ¼ crrðc2 þ e22Þ þ lH 2
z

crrð1þ e21Þ þ lH 2
z

; C2
L ¼ crr þ crre21 þ lH 2

z

crr
; m ¼ � crre2

crrð1þ e21Þ þ lH 2
z

ð15Þ
Substituting Eq. (13a) into Eq. (11a), the corresponding stress boundary condition can be written as
n ¼ s :
ouðn; sÞ

on
þ h

uðn; sÞ
n

¼ P1ðsÞ ð16aÞ

n ¼ 1 :
ouðn; sÞ

on
þ h

uðn; sÞ
n

¼ P2ðsÞ ð16bÞ
where
h ¼ c1 þ e1e2
1þ e21

P1ðsÞ ¼
1

1þ e21
PaðsÞ
h

þ e1
s
dðsÞ

i
P2ðsÞ ¼

1

1þ e21
½PbðsÞ þ e1dðsÞ� ð17Þ
Assume that the general solution of the basic equation (14) is of the form (Eringen and Suhubi, 1975)
uðn; sÞ ¼ usðn; sÞ þ udðn; sÞ ð18Þ

where usðn; sÞ and udðn; sÞ are the quasi-static solution and the dynamic solution of Eq. (14), respectively.

The quasi-static solution usðn; sÞ must satisfy the following equation and the corresponding boundary

condition:
o2usðn; sÞ
on2

þ 1

n
ousðn; sÞ

on
� H 2usðn; sÞ

n2
¼ m

dðsÞ
n2

ð19aÞ

ousðn; sÞ
on

�
þ h

usðn; sÞ
n

�
n¼s

¼ P1ðsÞ ð19bÞ

ousðn; sÞ
on

�
þ h

usðn; sÞ
n

�
n¼1

¼ P2ðsÞ ð19cÞ
Using the method described in Lekhniskii (1981), the general solution of Eq. (19a) is expressed as



H.L. Dai, X. Wang / International Journal of Solids and Structures 41 (2004) 5231–5246 5237
usðn; sÞ ¼ B1n
H þ B2

nH
� mdðsÞ

H 2
ð20Þ
where B1 and B2 are unknown constants which can be determined by making use of the boundary

conditions (19b) and (19c). Thus, Eq. (20) is rewritten as
usðn; sÞ ¼ u1ðnÞPaðsÞ þ u2ðnÞPbðsÞ þ u3ðnÞdðsÞ ð21Þ
where
u1ðnÞ ¼
g1

1þ e21
nH þ g2

1þ e21
n�H ð22aÞ
u2ðnÞ ¼ � g1s�ðHþ1Þ

1þ e21
nH � g2sðH�1Þ

1þ e21
n�H ð22bÞ
u3ðnÞ ¼
e1

ð1þ e21Þ

�
þ hm

H 2

�
1

s

��
� s�ðHþ1Þ

�
g1n

H þ 1

s

�
� sðH�1Þ

�
g2n

�H

�
� m
H 2

ð22cÞ
g1 ¼
1

ðH þ hÞ½sH�1 � s�ðHþ1Þ� ; g2 ¼
1

ðH � hÞ½sH�1 � s�ðHþ1Þ� ð22eÞ
Substituting Eq. (18) into Eq. (14), and utilizing Eq. (19), the dynamic solution udðn; sÞ should satisfy the

following inhomogeneous equation (23), the corresponding homogeneous boundary conditions (24) and
the initial conditions (25)
o2udðn; sÞ
on2

þ 1

n
oudðn; sÞ

on
� H 2

n2
udðn; sÞ ¼

1

C2
L

o2udðn; sÞ
os2

�
þ o2usðn; sÞ

os2

�
ð23Þ
oudðn; sÞ
on

�
þ h

udðn; sÞ
n

�
n¼s

¼ 0
oudðn; sÞ

on

�
þ h

udðn; sÞ
n

�
n¼1

¼ 0 ð24Þ
udðn; 0Þ þ usðn; 0Þ ¼ u0
oudðn; 0Þ

os
þ ousðn; 0Þ

os
¼ v0 ð25Þ
In Eq. (23), usðn; sÞ is the known solution as shown in Eq. (21).

Utilizing Eq. (24), the eigen-equation of the homogeneous form (let us ¼ 0) of Eq. (23) is expressed as
JaYb � JbYa ¼ 0; ð26Þ
where
Ja ¼ kiJ 0
HðkisÞ þ h

JHðkisÞ
s

Ya ¼ kiY 0
HðkisÞ þ h

YHðkisÞ
s

Jb ¼ kiJ 0
HðkiÞ þ hJHðkiÞ Yb ¼ kiY 0

HðkiÞ þ hYHðkiÞ
ð27a–dÞ
JHðkinÞ and YHðkinÞ are the first and the second kind of the H th-order Bessel function, respectively. In these

expressions, kiði ¼ 1; 2; . . . ; nÞ denotes a series of positive roots for eigen-equation (26). The natural fre-

quencies are
xi ¼ CLki ð28Þ
From Cinelli (1965), defining �udðki; sÞ as the finite Hankel transform of udðn; sÞ, yields
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�udðki; sÞ ¼ H ½udðn; sÞ� ¼
Z 1

s
nudðn; sÞCHðkinÞdn ð29Þ
The inverse transform to Eq. (29) is defined as
udðn; sÞ ¼
X
ki

�udðki; sÞ
F ðkiÞ

CHðkinÞ ð30aÞ
where
CHðkinÞ ¼ JHðkinÞYa � JaYHðkinÞ ð30bÞ
F ðkiÞ ¼
Z 1

s
n½CHðkinÞ�2 dn

¼ J 2
a

J 2
b

2

k2i p2
h2

(
þ k2i 1

"
� H

ki

� �2
#)

� 2

k2i p2

h
s

� �2
(

þ k2i 1

"
� H

kis

� �2
#)

ð30cÞ
Applying the finite Hankel transform (29) to (23), and utilizing the boundary conditions (24), yield
�k2i �udðki; sÞ ¼
1

C2
L

o2udðki; sÞ
os2

�
þ o2usðki; sÞ

os2

�
ð31Þ
where �usðki; sÞ ¼ H ½usðn; sÞ�.
Applying the Laplace transforms for Eq. (31), gives
ud�ðki; pÞ ¼ �us�ðki; pÞ þ
x2

i

ðx2
i þ p2Þ us

�ðki; pÞ þ
pu0ðkiÞ

ðx2
i þ p2Þ þ

v0ðkiÞ
ðx2

i þ p2Þ ð32Þ
where p is the Laplace transform parameter, and u0ðkiÞ ¼ H ½u0ðnÞ�, v0ðkiÞ ¼ H ½v0ðnÞ�. The inverse transform
of Eq. (32) is given by
udðki; sÞ ¼ �u1ðkiÞI1iðki; sÞ þ �u2ðkiÞI2iðki; sÞ þ �u3ðkiÞI3iðki; sÞ þ I4iðki; sÞ ð33Þ
where �u1 ¼ H ½u1�, �u2 ¼ H ½u2�, �u3 ¼ H ½u3�
I1iðki; sÞ ¼ �PaðsÞ þ xi

Z s

0

PaðtÞ sin½xiðs� tÞ�dt

I2iðki; sÞ ¼ �PbðsÞ þ xi

Z s

0

PbðtÞ sin½xiðs� tÞ�dt

I3iðki; sÞ ¼ �dðsÞ þ xi

Z s

0

dðtÞ sin½xiðs� tÞ�dt

I4iðki; sÞ ¼ u0ðkiÞ cosðxisÞ þ v0ðkiÞ
1

xi
sinðxisÞ

ð34Þ
Substituting Eq. (33) into Eq. (30), gives
udðn; sÞ ¼
X
ki

CHðkinÞ
F ðkiÞ

½�u1ðkiÞI1iðki; sÞ þ �u2ðkiÞI2iðki; sÞ þ �u3ðkiÞI3iðki; sÞ þ I4iðki; sÞ� ð35Þ
Substituting Eqs. (21) and (35) into Eq. (18), the solution of the dynamic responses of piezoelectric hollow

cylinders is expressed as
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uðn; sÞ ¼ u1ðnÞPaðsÞ þ u2ðnÞPbðsÞ þ u3ðnÞdðsÞ þ
X
ki

CHðkinÞ
F ðkiÞ

½�u1ðkiÞI1iðki; sÞ þ �u2ðkiÞI2iðki; sÞ

þ �u3ðkiÞI3iðki; sÞ þ I4iðki; sÞ� ð36Þ
It is noted that in the above expression, dðsÞ is an unknown function which is related to the electric

displacement. It is necessary to determine dðsÞ in the following. Integrating Eq. (12) and utilizing the

corresponding electric boundary condition (11b), yield
/ðn; sÞ ¼ U1ðnÞPaðsÞ þ U2ðnÞPbðsÞ þ U3ðnÞdðsÞ þ
X
i

U4iðnÞFiðsÞ þ /aðsÞ ð37Þ
where
U1ðnÞ ¼ e1 u1ðnÞ
"

�u1ðsÞ �
X
ki

ðCHðkinÞ �CHðkisÞÞ
F ðkiÞ

�u1ðkiÞ
#
þ e2

Z n

s

1

f
u1ðfÞ

"
�
X
ki

CHðkifÞ
F ðkiÞ

�u1ðkiÞ
#
df

ð38aÞ

U2ðnÞ ¼ e1 u2ðnÞ
"

�u2ðsÞ �
X
ki

ðCHðkinÞ �CHðkisÞÞ
F ðkiÞ

�u2ðkiÞ
#
þ e2

Z n

s

1

f
u2ðfÞ

"
�
X
ki

CHðkifÞ
F ðkiÞ

�u2ðkiÞ
#
df

ð38bÞ

U3ðnÞ ¼ e1 u3ðnÞ
"

� u3ðsÞ �
X
ki

ðCHðkinÞ � CHðkisÞÞ
F ðkiÞ

�u3ðkiÞ
#

þ e2

Z n

s

1

f
u3ðfÞ

"
�
X
ki

CHðkifÞ
F ðkiÞ

�u3ðkiÞ
#
df� ln

n
s

� �
ð38cÞ

U4iðnÞ ¼ e1
ðCHðkinÞ � CHðkisÞÞ

F ðkiÞ
þ e2

Z n

s

1

f
CHðkifÞ
F ðkiÞ

df ð38dÞ
and
FiðsÞ ¼ F1iðsÞ þ �u3ðkiÞxi

Z s

0

dðtÞ sin½xiðs� tÞ�dt ð39aÞ

F1iðsÞ ¼ �u1ðkiÞxi

Z s

0

PaðtÞ sin½xiðs� tÞ�dt þ �u2ðkiÞxi

Z s

0

PbðtÞ sin½xiðs� tÞ�dt þ u0ðkiÞ cosðxisÞ

þ v0ðkiÞ
1

xi
sinðxisÞ ð39bÞ
When n ¼ 1, Eq. (37) can be rewritten as
/bðsÞ ¼ U1ð1ÞPaðsÞ þ U2ð1ÞPbðsÞ þ U3ð1ÞdðsÞ þ
X
i

U4ið1ÞFiðsÞ þ /aðsÞ ð40Þ
Substituting s ¼ 0 into Eq. (40), yields
dð0Þ ¼ /bð0Þ � /að0Þ � U1ð1ÞPað0Þ � U2ð1ÞPbð0Þ �
P

i U4ið1ÞFið0Þ
U3ð1Þ

ð41Þ
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Substituting Eq. (40) into Eq. (39a), gives
#ðsÞ ¼ M1dðsÞ þ
X
i

M2i

Z s

0

dðtÞ sin½xiðs� tÞ�dt ð42aÞ
where
#ðsÞ ¼ /bðsÞ � /aðsÞ � U1ð1ÞPaðsÞ � U2ð1ÞPbðsÞ �
X
i

U4ið1ÞF1iðsÞ

M1 ¼ U3ð1Þ; M2i ¼ U4ið1Þ�u3ðkiÞxi

ð42bÞ
It is seen that Eq. (42a) is Volterra integral equation of the second kind (Kress, 1989). In the following,

Eq. (42) is solved by using the recursion formula based on linear interpolation function. Dividing the time

interval ½0; s� into n subintervals, the discrete time points are s0 ¼ 0; s1; s2; . . . ; sn. The interpolation function

at the time interval ½sj�1; sj� is expressed as
dðsÞ ¼ njðsÞdðsj�1Þ þ gjðsÞdðsjÞ ðj ¼ 1; 2; . . . ; nÞ ð43Þ
where
njðsÞ ¼
s� sj

sj�1 � sj
; gjðsÞ ¼

s� sj�1

sj � sj�1

ðj ¼ 1; 2; . . . ; nÞ ð44Þ
Substituting Eq. (43) into Eq. (42a), gives
#ðsjÞ ¼ M1dðsjÞ þ
X
i

M2i

Xj

k¼1

½Rijkdðsk�1Þ þ SijkdðskÞ� ð45Þ
where
Rijk ¼
Z sk

sk�1

nkðtÞ sin½xiðs� tÞ�dt

Sijk ¼
Z sk

sk�1

gkðtÞ sin½xiðs� tÞ�dt ðk ¼ 1; 2; . . . ; j; j ¼ 1; 2; . . . ; nÞ
ð46Þ
Solving Eq. (45), gives
dðsjÞ ¼
#ðsjÞ �

P
i M2i

Pj�1

k¼1½Rijkdðsk�1Þ þ SijkdðskÞ� � dðsj�1Þ
P

i M2iRijj

M1 þ
P

i M2iSijj
ðj ¼ 1; 2; . . . ; nÞ ð47Þ
Substituting dð0Þ in Eq. (41) into Eq. (47), dðsjÞ, ðj ¼ 1; 2; . . . ; nÞ can be determined step by step. Thus, the
exact expression of the dynamic displacement uðn; sÞ is obtained. The dynamic stresses rrðn; sÞ, rhðn; sÞ, the
dynamic electric displacement Drðn; sÞ, the dynamic electric potential /ðn; sÞ, and the perturbation of

magnetic field vector hzðn; sÞ are easily obtained from Eqs. (36), (37), (8) and (4b).
4. Numerical results and discussions

The dynamic responses of piezoelectric hollow cylinders in an axial magnetic field subjected to a sudden

pressure on the internal surface and a sudden electric potential on the external surface are considered. In the

numerical calculations, the material constants for the piezoelectric hollow cylinder are taken as :

crr ¼ czz ¼ 110:0 GPa, crh ¼ 77:8 GPa, crz ¼ chz ¼ 115:0 GPa, chh ¼ 220:0 GPa, erz ¼ erh ¼ �5:2 (C/m2),
err ¼ 15:1 (C/m2), err ¼ 5:62� 10�9 (C2/Nm2) and q ¼ 4350 (kg/m3), the internal radius of the piezoelectric

hollow cylinder is taken as a ¼ 0:01 m, and an equal time step is used to obtain the simplest recursion
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formula determining the coupling function dðsÞ in the Volterra integral equation of the second kind (42a).

In order to ensure the precision of the result, the equal time step Ds ¼ 0:01 is taken. When series terms

ki ¼ 50, the relative errors of solutions are less than 1%.

Example 1. The dynamic responses of the piezoelectric hollow cylinder in an axial magnetic field subjected

to only a sudden pressure on the internal surface are considered. The corresponding boundary conditions

are expressed as
rrðs; sÞ ¼ �dðsÞ rrð1; sÞ ¼ 0 ð48aÞ
/ðs; sÞ ¼ 0 /ð1; sÞ ¼ 0 ð48bÞ
where dðsÞ expresses the Heaviside function.
(a) A special case in which the ratio of internal radius to external radius s ¼ a=b ¼ 1=20, and the

dimensionless response time s1 ¼ CLs
sCV

¼ CLt
a is taken. When the computing time s16 20, it is before the

wavefront of responded waves arrives at the external boundary R ¼ ½r�a
a �r¼b ¼ 20, and reflected waves have

not been produced at the external boundary. In the above case, the histories of radial stress, hoop stress

and perturbation of magnetic field vector at r ¼ a; 2a and 3a are, respectively, shown in Fig. 2a–c. The

curves in Fig. 2a–c clearly show the features of the compression waves propagating in the piezoelectric

hollow cylinders subjected to sudden internal pressure and an axial magnetic field. From Fig. 2a it is seen

that the radial stresses at r ¼ a and r ¼ 21a are, respectively, equal to )1 and zero, which satisfies the
internal and external boundary conditions (48a). From Fig. 2a–e it is seen that the dynamic responses and

perturbation of magnetic field vector at some points equal zero before the arrival of the wavefront, and

have strong discontinuities at the points where the wavefront arrives at. The amplitude of the wavefront

decays gradually, and the dynamic response approaches to the solution of quasi-static equation at the

same point when time is large and the effects of reflected waves have not been produced. Due to the effects

of the strong discontinuities, the sign of the hoop stress at the wavefront is reversed as compared to that

of the quasi-static hoop stress as shown in Fig. 2b. Fig. 2d and e show the response histories and dis-

tributions of the electric displacements Drðn; sÞ and the electric potentials /ðn; sÞ at the different radial
points in the piezoelectric hollow cylinder subjected to a suddenly pressure on the internal surface. From

Fig. 2d and e, it is easily seen that the response histories and distributions of the electric displacements

Drðn; sÞ and the electric potential /ðn; sÞ are similar to that of the dynamic stresses as shown in Fig. 2a

and b. They will also arrive finally at a steady value when time s is large and the effects of reflected waves

have not been produced. From Fig. 2e it is also seen that the electric potentials /ðn; sÞ at the internal and
external boundary equals zero, which satisfies the prescribed electric boundary conditions (48b). The

above descriptions show that the solution in the paper possesses wave properties, and the correctness of

the numerical results is validated.
(b) In the following calculation, the ratio of internal radius to external radius is taken as

s ¼ a=b ¼ 1=2, the dimensionless time s1 ¼ CLs
ð1�sÞCV

¼ CLt
b�a, the dimensionless radial coordinate R ¼ n�s

1�s ¼ r�a
b�a.

When the computing time s16 20, because of the small wall thickness, a=b ¼ 1=2, when the responded

time is taken as s1P 1, the effects of wave reflected between the inner-wall and outer-wall have been

produced. From Fig. 3a–e, it is shown that, except that the radial stresses and electric potentials at the

internal and external surfaces in the piezoelectric hollow cylinder satisfy the given boundary condition,

the dynamic stresses, the electric displacement, the electric potential, and the perturbation of magnetic

field vector at other points oscillate dramatically because of the effect of wave reflected between the inner

wall and outer wall. From Fig. 3b–d, it is shown that the peak values of hoop stresses, perturbation of

magnetic field vector and electric displacements decrease gradually from the inner-wall to the outer-wall
at the same time s.



0 5 10 15 20
-1.2

-0.8

-0.4

0.0

0.4

R=20

R=2

R=0
R=1

σr

τ1

 Static solution

0 5 10 15 20
-1

0

1

2

3

R=2

R=1

R=0

σθ

τ1

 Static solution

0 5 10 15 20
-0.4

0.0

0.4

0.8

1.2

R=2

R=1

R=0

hz

τ1

 Static solution

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

R=2

R=1

R=0
Dr

τ1

0 5 10 15 20
-0.0025

0.0000

0.0025

0.0050

0.0075

R=2

R=1

R=0 and R=20

τ1

φ

(a) (b)

(c) (d)

(e)

Fig. 2. Response histories of: (a) dynamic stress rr at R ¼ 0, R ¼ 1, R ¼ 2 and R ¼ 20, where R ¼ ðr � aÞ=a, s1 ¼ CLt=a; (b) dynamic

stress rh at R ¼ 0, R ¼ 1, and R ¼ 2, where R ¼ ðr � aÞ=a, s1 ¼ CLt=a; (c) perturbation of magnetic field vector hz at R ¼ 0, R ¼ 1 and

R ¼ 2, where R ¼ ðr � aÞ=a, s1 ¼ CLt=a; (d) dynamic electric displacement Dr at R ¼ 0, R ¼ 1 and R ¼ 2, where R ¼ ðr � aÞ=a,
s1 ¼ CLt=a and (e) dynamic electric displacement / at R ¼ 0, R ¼ 1 R ¼ 2 and R ¼ 20, where R ¼ ðr � aÞ=a, s1 ¼ CLt=a.

5242 H.L. Dai, X. Wang / International Journal of Solids and Structures 41 (2004) 5231–5246
Example 2. The dynamic responses of the piezoelectric hollow cylinder in an axial magnetic field subjected

to only a sudden electric potential on the external surface are considered in the following calculation. The

corresponding boundary conditions are written as
rrðs; sÞ ¼ 0 rrð1; sÞ ¼ 0 ð49aÞ
/ðs; sÞ ¼ 0 /ð1; sÞ ¼ dðsÞ ð49bÞ
The ratio of internal radius to external radius is taken as s ¼ a=b ¼ 1=2, the dimensionless time
s1 ¼ CLs

ð1�sÞCV
¼ CLt

b�a, the dimensionless radial coordinate R ¼ n�s
1�s ¼ r�a

b�a. When the responded time is taken as

s1P 1, because of the small wall thickness, a=b ¼ 1=2, and the effects of wave reflected between the inner-
wall and outer-wall have been produced. From Fig. 4a and e, it is seen that the radial stresses and the
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electric potential at the boundaries R ¼ 0; 1 satisfy the given boundary conditions. Fig. 4a–e show that

except the points at given boundary conditions, all dynamic responses at other points oscillate dramatically

around the corresponding quasi-static values because of the effects of wave reflected between the inner-wall
and outer-wall. Fig. 4b shows that the amplitude of the hoop compression stress in the piezoelectric hollow

cylinder subjected to only unit electric potential at outer wall is larger than the amplitude of the hoop tensile

stress. Fig. 4c depicts the response of the perturbation of magnetic field vector at R ¼ 0 and R ¼ 1. From

the curves in Fig. 4c, it is seen that because of the effects of wave reflected the variation of the perturbation

of magnetic field vector is similar to that in Fig. 3c. Comparing Figs. 3c and 4c, it is seen that the

respondent amplitude of the perturbation of magnetic field vector caused by the sudden unit electric po-

tential is larger than that caused by the sudden unit pressure. Fig. 4d shows that the electric displacement

value is negative in the cylinder, and the corresponding absolute value decreases with the increasing of R.
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Fig. 4e shows the distribution of electric potential in the piezoelectric hollow cylinder subjected to sudden

unit electric potential at outer wall, which is apparently different from that in the piezoelectric hollow

cylinder subjected to sudden unit pressure as shown in Fig. 3e. From Fig. 4e it is seen that the distribution

of electric potential along the radial direction of the cylinder is weakly non-linear, and it changes as the

respondent time changes.

Example 3. In order to prove further the correctness of analytical results in the paper, omitting the axial

magnetic field load in Eq. (5), the present method can be applied to solve the transient problem of pie-

zoelectric hollow cylinders. For ease of comparison with reference (Ding et al., 2003), the same transient

problem of piezoelectric hollow cylinders no considering an axial magnetic field load is taken and the same
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parameters are taken: the ratio of internal radius to external radius s ¼ a=b ¼ 1=2, dimensionless time

s1 ¼ CLs
ð1�sÞCV

¼ CLt
b�a and the dimensionless radial coordinate R ¼ n�s

1�s ¼ r�a
b�a. The boundary conditions are ex-

pressed in Eq. (48a,b). From Fig. 5a and b, one can see that the results from the two different methods are

nearly the same.
5. Conclusions

(1) Although the transient responses of coupled fields have been studied by a number of authors, no pub-

lished result can be used for a comparison with the present model. In fact, most of the previous works

have focused on the transient responses of magnetothermoelasticity or electroelasticity. To our knowl-

edge, no detailed report on the dynamic responses of piezoelectric hollow cylinders in an axial magnetic

field is available in the literature. This is apparently due to the fact that the experiment on the dynamic

responses of piezoelectric hollow cylinders in an axial magnetic field remains a formidable task.

(2) From the results and discussions in Example 1(a) it is seen that the results presented in Fig. 2a and b

appears in the feature of the compression waves which is similar as the wave propagation in an infinite
elastic solid with a cylindrical cavity subjected to only a sudden interior pressure (Achenbach, 1973 and

Miklowitz, 1978). The other hand, in Example 3, the transient problem of piezoelectric hollow cylinders

no considering an axial magnetic field load is calculated for simple comparison with reference (Ding

et al., 2003). Therefore, it is concluded that the correctness of the numerical results in this paper is valid.

Thus, the solving method may be used as a reference to solve other dynamic coupled problems in a pie-

zoelectric hollow cylinder in an axial magnetic field, subjected to mechanical load and electric shocks.

(3) Because of the interaction between elastic deformation, electric field and magnetic field, a sudden

mechanical load induces the response of electric displacement and electric potential, and the perturba-
tion of magnetic field vector in a piezoelectric hollow cylinder. Likewise, a sudden electric potential also

causes the dynamic stresses responses, and the perturbation of magnetic field vector in the piezoelectric

hollow cylinder. Thus, applying a suitable electric excitation to a piezoelectric hollow cylinder can con-

trol the responses and distributions of dynamic stresses, and the perturbation of magnetic field vector in

the piezoelectric hollow cylinder.

(4) Utilizing the knowledge of the response histories of dynamic stresses, electric displacements, electric

potentials and perturbations of an axial magnetic field vector in a piezoelectric hollow cylinder, various

electromagnetoelastic elements under mechanical loads and electric potential shocks can be designed
to meet specific engineering requirements.
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