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Abstract

This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic
deformations and mechanical loads, and describes electromagnetoelastic responses and perturbation of the magnetic
field vector in a piezoelectric hollow cylinder subjected to sudden mechanical load and electric potential. An interpo-
lation method is applied to solve the Volterra integral equation of the second kind caused by interactions between
different physical fields. By means of finite integral transforms, Laplace transforms, and their inverse transforms, the
exact expressions for the dynamic responses of stresses, electric displacements, electric potentials and perturbation
response of an axial magnetic field vector in the piezoelectric hollow cylinders are obtained. The present method is
suitable for piezoelectric hollow cylinders in an axial magnetic field, subjected to arbitrary mechanical loads and
electrical potential shocks. Finally, numerical results are carried out and discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The interaction of electric potentials, electric displacements and elastic deformations in structures is
studied due to its many engineering applications in the fields of magnetic storage elements, magnetic
structural elements, plasma physics and the corresponding measurement techniques of magnetoelasticity.
The coupling of elastic deformation, electric field and magnetic field gives rise to the theory of dynamic
coupled electromagnetomechanics, which is known to be especially suitable in the high frequency and short
wave-length modes described by Eringen (2003). Shul’ga et al. (1984) investigated the axisymmetric elec-
troelastic waves in a hollow piezoelectric ceramic cylinder by using a method based on representation of the
solution in the form of powers of the radial coordinate, and gave an analysis of dispersion relations and the

*Corresponding authors. Tel.: +86-2154745816; fax: +86-2154745821.
E-mail addresses: hldai520@sjtu.edu.cn (H.L. Dai), xwang@sjtu.edu.cn (X. Wang).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.04.019


mail to: hldai520@sjtu.edu.cn

5232 H.L. Dai, X. Wang | International Journal of Solids and Structures 41 (2004) 5231-5246

Nomenclature

U, u. displacement vector and radial displacement [m]

cij, €y & elastic constants [N/m?], piezoelectric constants [C/m*] and dielectric constants [C*/N m?]
ci;, D, the component of stresses [N/m?*] and radial electric displacement [C/m?]

W(r,t) electric potential [W/A]

foz Lorentz’s force [kg/m?® s?]

o, t mass density [kg/m3] and time [s]

r radius [m]

a, b inner and outer radii of piezoelectric hollow cylinder [m]
u magnetic permeability [H/m]

IE] magnetic intensity vector (0,0, H,)

h perturbation of magnetic field vector (0,0, 4,)

J electric current density vector

e perturbation of electric field vector

CL electromagnetoelastic wave speed [m/s]

W the inherent frequency of the hollow cylinder [1/s].

effect of the piezoelectric effect on dynamic characteristics of the waveguide. Chand et al. (1990) presented
the investigations of the distribution of deformation, temperature, stresses and magnetic field in a homo-
geneous isotropic, thermally and electrically conducting, uniformly rotating elastic half-space, in contact
with vacuum, due to impulsive load at the plane boundary, utilizing the generalized theory of thermo-
elasticity. Dhaliwal and Saxena (1991) applied generalized elasticity theory to solve the problem of mag-
netothermoelastic waves produced by thermal shock in an infinite elastic solid with a cylindrical cavity,
obtained approximate small-time solutions in some cases, and gave numerical results for displacement,
temperature, and stresses. Sherief and Ezzat (1996) used the Laplace transform technique to find the dis-
tribution of thermal stresses and temperature in a generally thermoelastic and electrically conducting half-
space under sudden thermal shock and permeated by a primarily uniform magnetic field. Solodyak and
Gachkevich (1996) presented an analytical method for obtaining electromagnetic and temperature fields as
well as mechanical stresses in a ferromagnetic solid subjected to a harmonic electromagnetic field at the
frequencies usually used in industry. The free vibrations of piezoelectric, empty and also compressible fluid
filled cylindrical shells as three-dimensional problems were studied by Ding et al. (1997) using triangle
series. Ezzat (1997) described the distribution of thermal stresses and temperature in a perfectly conducting
half-space when suddenly heated to a constant temperature, and compared that with the results obtained in
the absence of a magnetic field by using the method of potentials and Laplace transform techniques. The
technique of finite integral transforms is presented in Wang and Lu (2002) to analyse magnetothermoelastic
waves and perturbation of the magnetic field vector produced by thermal shock in a solid conducting
cylinder, and the focusing effect on both magnetothermostress and perturbation of the axial magnetic field
vector was revealed in the paper. By virtue of the variable separation technique and the interpolation
method, Ding et al. (2003) investigated the axisymmetric plane strain electroelastic dynamic problem of a
hollow cylinder, and presented the numerical results for the displacements, stresses, electric displacements
and electric potentials. To date, investigations on the dynamic response of coupled fields have mostly
considered magnetothermoelasticity and electroelasticity. The investigations on the dynamic responses of
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the coupling of three physical fields for electricity, magnet and elastic deformation have been limited be-
cause of its complexity.

In the paper, an analytical method is developed for solving the dynamic responses of piezoelectric hollow
cylinders in an axial magnetic field, subjected to sudden mechanical load and electric potential shock. First,
the electromagnetodynamic equilibrium equation for an orthotropic piezoelectric hollow cylinder is de-
rived. Second, the electromagnetodynamic equilibrium equation is decomposed into a homogeneous quasi-
static equation, which satisfies the inhomogeneous boundary conditions, and an inhomogeneous dynamic
solution, which satisfies homogeneous boundary conditions. By using the method described in Lekhniskii
(1981), the solution for the homogeneous quasi-static equation which satisfies the inhomogeneous
boundary conditions is obtained. After using an interpolation method to solve the Volterra integral
equation of the second kind caused by interactions, the solution for the inhomogeneous dynamic solution
which satisfies homogeneous boundary conditions can be obtained by means of the finite Hankel trans-
forms (Cinelli, 1965), the Laplace transforms, and their inverse transforms. Thus, the solution for the
dynamic responses of piezoelectric hollow cylinders, in an axial magnetic field, subjected to sudden
mechanical load and electric potential is rigorously derived.

Finally, some practical examples are calculated. The histories and distributions of the dynamic stresses,
the electric displacement, the electric potential and the perturbation of magnetic field vector are carried out.
The feature of the solution is related to the propagation of the cylindrical wave. The interactions among the
dynamic stress, the electric displacement, the electric potential and the perturbation of magnetic field vector
are carried out and discussed.

2. Statement of the problem and basic formulations

A long, piezoelectric hollow cylinder placed initially in an axial magnetic field H (0,0, H,) is shown in
Fig. 1. For the axisymmetic plane strain problem, the components of displacement and electric potential in
the cylindrical coordinate (r,0,z) system are expressed as ug =0, u, =0, u, = u.(r,t) and = y(r,?),

N

Fig. 1. A long piezoelectric hollow cylinder in an axial magnetic field.
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respectively. The constitutive equations of orthotropic, radially polarized piezoelectric material are
expressed as

O = Cpy % + c,(; " +e, aalf (la)
Ueezcreaa + cop— +€r9%¢ (1b)
0. = crzaa + C()z “+e, ?;f (Ic)
D=,y gy, (1)

where ¢;;, e; and ¢; are elastic constants, piezoelectric constants and dielectric constants in cylindrical
coordinate (r,0,z) system, respectively. ¢;; and D,, are the components of stress and radial electric dis-
placement, respectively.

The boundary conditions are

G(a,t) = Po(t) 0, (b,1) = Py(t) (2a)
Wia,t) =y, () w(b,t)=y,(1) (2b)

Assuming that the magnetic permeability, u, (Ezzat, 1997) of the piezoelectric hollow cylinder equals the
magnetic permeability of the medium around it, the governing electrodynamic Maxwell equations (John,
1984) are given by

éz—y(U@xﬁ> h=V x (UxH) (3)

Applying an initial magnetic field vector H (0,0,H,) in cylindrical coordinate (r,0,z) system to Eq. (3),
yields

_ ou,

U = (u,(r,1),0,0), &= (0 H—=, 0), (4a)

- - oh ou, u

h=1(0,0,h.), =(0,——,0), h=-H—+-=< 4

0.0, 7= (0.-35.0) (5e+%) (4b)

The electomagnetic dynamic equilibrium equation of the piezoelectric hollow cylinder is expressed as

ao—rr G — azur

or + r +fzz P )

where p is the mass density, f,. is defined as Lorentz’s force (John, 1984), which can be written as

0 (Ou., u,
jau (Jwa—wﬂw(ar+7> (6)
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In order to simplify calculation, the non-dimensional forms are given by

011@, 02:@, 03:%’ c4:%, o = e

Crr Crr o c, N
ez_\/if—&r e—\/%, a,:Z—::(l:r,G,z), ¢ = i_:%
D'_\/Ic%’ ”:%’ éz%’ S:%’ CV_\/%’ :%, f %b

Then, Eqgs. (1) and (5) can be rewritten as follows:

_ou v, 00
O',,—af Clé elaf
a*c@+cz+e%
0= 165 25 265
_ou w00
O'Z—Cg,aé 045 8366
Ou u 0¢
Dr=agtes w
do, o0,— 0y _62u
et T
_ MO (Ou
= 6§<6é+é

5235

(8a)

(8b)

(8¢)

(8d)

(8e)

(8f)

In absence of free charge density, the charge equation of electrostatics (Heyliger, 1996) is expressed as

°

aé (éDr(é7 T)) =0

O] —

Solving Eq. (9), gives
1
D,(¢,1) =-d(7)
¢
The corresponding boundary conditions and the initial conditions are expressed as
0.(s,7) = P,(7) 0,(1,7) = By(7)

(f)(S,‘L') = d)a(f) ({b(laf) = ()bh(r)
=0 u(&0)=up(&) u(& 1) =u0v(é)

(11a)
(11b)

(11¢)
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3. Solution of the problem

Substituting Eq. (10) into Eq. (8d), yields

op au

hid 12

2 — gt er -2 (12)
Substituting Eq. (12) into Egs. (8a) and (8b), gives

o =(1+ ef>g%+ (e + elez)%—%d(f) (13a)

o0 = (c1 +ele2)a§ (c2+e§)%f—5d(f) (13b)

Substituting Eq. (13) into Eq. (8¢), the electromagnetodisplacement equilibrium equation is expressed as

*u(é, 1) Jr1 (& t) H?u(ét) 1 Pu(ér) d(7)

- - - ay 14
o e g q o Mg (4
where
H2 _ Crr (CZ + eg) + :UHZ C2 _ Crr + Crre% + ,quz m=— Crr€3 (15)
cr(l+e}) +uH2’ ¢ Crr ’ c(1 +€3) + uH?
Substituting Eq. (13a) into Eq. (11a), the corresponding stress boundary condition can be written as
ou(é ) |, u(é1)
= =P 1
¢ o +h 7 10 (16a)
ou(é, 1) u(é )
=1 h =P 16b
¢ a¢ + z >(1) (16b)
where
= R = [P0+ 2d0] B = ol + ad) (1)
= = - a — e
1+ : 1+ s : 1+e°° :

Assume that the general solution of the basic equation (14) is of the form (Eringen and Suhubi, 1975)
u(f,r) = us(évf) +Md(é,f) (18)

where u (&, 1) and uy(&, 1) are the quasi-static solution and the dynamic solution of Eq. (14), respectively.
The quasi-static solution u(&, 7) must satisfy the following equation and the corresponding boundary
condition:

Pu(er)  1au(En) Hu(Er)_ d)

Qug(&,7)  us(&,1) B
[ % +h 7 } L =P (7) (19b)

[l yulén] _pg (19)

o¢ ¢
Using the method described in Lekhniskii (1981), the general solution of Eq. (19a) is expressed as
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B d
us(&,7) = By " +€—,§ - mHgT)

(20)

where B; and B, are unknown constants which can be determined by making use of the boundary
conditions (19b) and (19c). Thus, Eq. (20) is rewritten as

us(¢,7) = @1 (Pu(t) + @2 (E)Po(7) + 93(S)d(7) (21)
where
R e (22a)
—(H+1) (H-1)
9,(&) = —g‘IS e M gfs+ 2 = (22b)
_ €1 hm | H Ly -H m

?s3(¢) = m‘f'ﬁ P &i¢ + P 8¢ i (22¢)

1 : (22e)

g1 = (H + h)[s"—1 — s~ @H+D]’ &= (H — h)[s#~1 — 5~ (H+D)]

Substituting Eq. (18) into Eq. (14), and utilizing Eq. (19), the dynamic solution u4(&, 7) should satisfy the
following inhomogeneous equation (23), the corresponding homogeneous boundary conditions (24) and
the initial conditions (25)

o 10 H? 1 [ Pu (€,
u;éf’ T) + E udé? T) — ?Ud(é, T) = C_I% |: ug.([f’ T) + uaig T):| (23)
aud(éar) ud(évf):| o |:aud(évr) ud(évr):| _
A P - (24)
ua(&,0) + us(&,0) = up Oug(£,0) | u(C,0) _ (25)

ot ot

In Eq. (23), us(&, 1) is the known solution as shown in Eq. (21).
Utilizing Eq. (24), the eigen-equation of the homogeneous form (let u, = 0) of Eq. (23) is expressed as

JaYb_JbYa :07 (26)

where

Ja = k,JI/_I(k,S) + h
Jb == liI/—I(kl) + hJHUC,) Y}, = leIiI(kl) + hYH(k,)

Ya = leIiI(kls) + h

JH(k[S) YH (kiS)
N N

(27a-d)

Ju (k&) and Yy (k&) are the first and the second kind of the Hth-order Bessel function, respectively. In these

expressions, k;(i =1,2,...,n) denotes a series of positive roots for eigen-equation (26). The natural fre-
quencies are
w; = C]_k,' (28)

From Cinelli (1965), defining u4(k;, 7) as the finite Hankel transform of u4(&, 7), yields
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1
ki ) = Hlual, 7)) = [ Cuale,)Culhie) o (29)
The inverse transform to Eq. (29) is defined as
_ g (kia T)
ug(&,t) = zk; F k) Cn(k€) (30a)
where
Cu (k&) = In(ki&)Y, — J, Yu (k&) (30b)

Flk) = / ElCu (k) dé
JZ

2
{h2 + &

T 222
J; kin

T - ()]

Applying the finite Hankel transform (29) to (23), and utilizing the boundary conditions (24), yield

1

QPug(ki,t)  us(kiy7)
_ 2— X - 1) S 1)
Gl ) = o | Sty S| a1
where u(k;, 1) = H[us(&, 7)].
Applying the Laplace transforms for Eq. (31), gives
— — o pio (ki) vo (ki)
(ki p) =~ (ki p) + - B (i p) + 32
) = ) G P ) T o ) >

where p is the Laplace transform parameter, and #5(k;) = Huo(&)], To(k;) = H[Do(&)]. The inverse transform
of Eq. (32) is given by

g (ki,t) = @y (ki) (ki ©) + @y (ki) Lo (kiy ©) + @3 (ki) ki, ) + Lui(Kiy ) (33)

where ¢, = H[p,], ¢, = H[p,], ¢35 = H[p;]
Li(ki,t) = —P,(7) + wi/TPa(t) sin[w;(t —1)] d¢

bLy(ki,t) = —Py(17) + o; /OTP;,(I) sin[w;(t — ¢)] d¢

: (34)
Ik, ©) = —d(7) + o / d(6) sin[oos(z — )] ds
0
Ly(kiy ) = up(k;) cos(w;t) + v_o(k,-)é sin(w;T)
Substituting Eq. (33) into Eq. (30), gives
(1) = 3 S 000, )+ 02k ) + 0508 ) + ) (3)
& i

Substituting Egs. (21) and (35) into Eq. (18), the solution of the dynamic responses of piezoelectric hollow
cylinders is expressed as
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U6 = 0ORL) + R + (D) + 3 CH W ‘5 Kk, 7) + a0 )

+ @3(ki) Lai (ki T) + Lag (i, 7)] (36)

It is noted that in the above expression, d(t) is an unknown function which is related to the electric
displacement. It is necessary to determine d(t) in the following. Integrating Eq. (12) and utilizing the
corresponding electric boundary condition (1 lb) yield

66,0 = DR + 2P + BAEE) + 3 Pu(OAE) + 4,00 (37)
where
%) =1 () 01~ 3 (Culhe) ~ ) g 1) e [ L ont0) - 3 D
) - ) -(383.)
%) = 1| 0x(0) s~ 3 GBStk e [ 5 a0 - 32 G ot at
- - - E38b)
&y(8) = e [%(é) ) =2 Culle Sl %(/m]
5
et s ()
_ (Cu(ki€) — Cul(ks)) “ 1 Cu(k)
¢4,~(5) = €] F(kl) (%)) : Z F(kl) d(: (38d)
and
F(©) = Fule) + os(l)o | do)sinfo(c - o) dr (39)
Fu(c) = @, (k) o /0 Py sinfor(z — 0] d + B (k) /0 "By (1) sinfeos(z — 1)] dt + T (k) cos ()
(k) — sin(e) (39b)
When & =1, Eq. (37) can be rewritten as
¢y(1) = P1(1)Pa(1) + Po(1)P(7) + D5(1 +Z‘I’4z }.(7) (40)

Substituting T = 0 into Eq. (40), yields

o0 = B = 40 = AP0 8D0) - T, 04O )
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Substituting Eq. (40) into Eq. (39a), gives
9(e) = Mid(0) + 3 My / d(¢) sinfor(x — )] dt (42a)
i 0
where
9(t) = $4(t) = Bu(t) — D1 (1)Pu(t) — B2(1)Py(7) = Y @us(1)Fis(7)

My = &5(1), My = ®4(1)p5 (ki)

(42b)

It is seen that Eq. (42a) is Volterra integral equation of the second kind (Kress, 1989). In the following,
Eq. (42) is solved by using the recursion formula based on linear interpolation function. Dividing the time

interval [0, ] into » subintervals, the discrete time points are 7o = 0, 71, 72, . . ., 7,. The interpolation function
at the time interval [r;_;, 7;] is expressed as
d(t) = &(v)d(r;-1) +my(0)d(r;) (i=1,2,....,n) (43)
where
T—7T; T— T .
E(t)=—L p(1)=—L1L =1,2,...,n 44
(= = ) (44)

Substituting Eq. (43) into Eq. (42a), gives

J

I(z;) = Mid(z)) + ZMZi > [Ripd(tir) + Sipd (i) (45)
where

Tk

Rij = i (2) sin[a; (T — 1) dt
o (46)
Sik = / () sinfw;(t —8)]dt (k=1,2,...,j, j=1,2,...,n)
T—1
Solving Eq. (45), gives
d(z)) = (%) = 52 Moy S [Rind (vi-1) + S (v0)] = d(1,1) 32, MaiRyyy
’ M+, MoSy;
Substituting d(0) in Eq. (41) into Eq. (47), d(z;), (j = 1,2,...,n) can be determined step by step. Thus, the
exact expression of the dynamic displacement u(¢&, 7) is obtained. The dynamic stresses ,(&, 1), g9(&, 7), the

dynamic electric displacement D, (&, 1), the dynamic electric potential ¢(&,1), and the perturbation of
magnetic field vector %.(&, t) are easily obtained from Egs. (36), (37), (8) and (4b).

(=12,....n) (47)

4. Numerical results and discussions

The dynamic responses of piezoelectric hollow cylinders in an axial magnetic field subjected to a sudden
pressure on the internal surface and a sudden electric potential on the external surface are considered. In the
numerical calculations, the material constants for the piezoelectric hollow cylinder are taken as :
¢y = c, = 110.0 GPa, ¢,y = 77.8 GPa, c,. = ¢y, = 115.0 GPa, cg9 = 220.0 GPa, e,. = e,y = —5.2 (C/m?),
e, = 15.1 (C/m?), ¢, = 5.62 x 10~ (C*/Nm?) and p = 4350 (kg/m?), the internal radius of the piezoelectric
hollow cylinder is taken as a = 0.01 m, and an equal time step is used to obtain the simplest recursion
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formula determining the coupling function d(t) in the Volterra integral equation of the second kind (42a).
In order to ensure the precision of the result, the equal time step At = 0.01 is taken. When series terms
k; = 50, the relative errors of solutions are less than 1%.

Example 1. The dynamic responses of the piezoelectric hollow cylinder in an axial magnetic field subjected
to only a sudden pressure on the internal surface are considered. The corresponding boundary conditions
are expressed as

o.(s,7) =—0(tr) o.(l,7)=0 (48a)

¢(s,7) =0 ¢(1,1)=0 (48b)

where (1) expresses the Heaviside function.
(a) A special case in which the ratio of internal radius to external radius s = a/b = 1/20, and the
Cue

dimensionless response time 7l = ﬁ ==L is taken. When the computing time 71 <20, it is before the

wavefront of responded waves arrives at the external boundary R = [9],_, = 20, and reflected waves have
not been produced at the external boundary. In the above case, the histories of radial stress, hoop stress
and perturbation of magnetic field vector at » = a,2a and 3a are, respectively, shown in Fig. 2a—c. The
curves in Fig. 2a—c clearly show the features of the compression waves propagating in the piezoelectric
hollow cylinders subjected to sudden internal pressure and an axial magnetic field. From Fig. 2a it is seen
that the radial stresses at » = a and r = 21la are, respectively, equal to —1 and zero, which satisfies the
internal and external boundary conditions (48a). From Fig. 2a—e it is seen that the dynamic responses and
perturbation of magnetic field vector at some points equal zero before the arrival of the wavefront, and
have strong discontinuities at the points where the wavefront arrives at. The amplitude of the wavefront
decays gradually, and the dynamic response approaches to the solution of quasi-static equation at the
same point when time is large and the effects of reflected waves have not been produced. Due to the effects
of the strong discontinuities, the sign of the hoop stress at the wavefront is reversed as compared to that
of the quasi-static hoop stress as shown in Fig. 2b. Fig. 2d and e show the response histories and dis-
tributions of the electric displacements D,(&, 1) and the electric potentials ¢(&, 1) at the different radial
points in the piezoelectric hollow cylinder subjected to a suddenly pressure on the internal surface. From
Fig. 2d and e, it is easily seen that the response histories and distributions of the electric displacements
D,(&,7) and the electric potential ¢(&, 1) are similar to that of the dynamic stresses as shown in Fig. 2a
and b. They will also arrive finally at a steady value when time 7 is large and the effects of reflected waves
have not been produced. From Fig. 2¢ it is also seen that the electric potentials ¢ (¢, 1) at the internal and
external boundary equals zero, which satisfies the prescribed electric boundary conditions (48b). The
above descriptions show that the solution in the paper possesses wave properties, and the correctness of
the numerical results is validated.

(b) In the following calculation, the ratio of internal radius to external radius is taken as
s = a/b=1/2, the dimensionless time ¢l = 755z = ;7. the dimensionless radial coordinate R = {=} = ;=%
When the computing time 71 < 20, because of the small wall thickness, a/b = 1/2, when the responded
time is taken as 7l > 1, the effects of wave reflected between the inner-wall and outer-wall have been
produced. From Fig. 3a—e, it is shown that, except that the radial stresses and electric potentials at the
internal and external surfaces in the piezoelectric hollow cylinder satisfy the given boundary condition,
the dynamic stresses, the electric displacement, the electric potential, and the perturbation of magnetic
field vector at other points oscillate dramatically because of the effect of wave reflected between the inner
wall and outer wall. From Fig. 3b—d, it is shown that the peak values of hoop stresses, perturbation of
magnetic field vector and electric displacements decrease gradually from the inner-wall to the outer-wall
at the same time 7.
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0.4 o, 3
Or + Static solution o . Stati uti
R=20 atic solution
0.0 s R e e e e e )

-0.4
R=1
-0.8 RT:O
-1.2 : - - - ; ' '
0 5 10 15 20 0 5 10 15 20
@ Tl (b) 1l
h,1.2 0.4
z Dr
081 « Static solution 03] R=0
R=0
0.4 .
0.2 R=1
0.0 0.1
R=2 R=2
-0.4 T T T 0.0 T r T
0 5 10 15 20 0 5 10 15 20
(c) 1l (d) 1l
¢ 0.0075
0.0050 -
0.0025 1 /
0.0000 4 R=0 and R=20
-0.0025 ; : ,
0 5 10 15 20
(e) Tl

Fig. 2. Response histories of: (a) dynamic stress g, at R=0, R=1, R =2 and R = 20, where R = (r — a)/a, 11 = Crt/a; (b) dynamic
stress gp at R=0, R = 1, and R = 2, where R = (r — a)/a, 11 = Cit/a; (c) perturbation of magnetic field vector 4, at R =0, R = 1 and
R =2, where R = (r —a)/a, 11 = Cpt/a; (d) dynamic electric displacement D, at R=0, R=1 and R =2, where R = (r —a)/a,
71 = Cit/a and (e) dynamic electric displacement ¢ at R=0, R =1 R =2 and R = 20, where R = (r — a)/a, 11 = Crt/a.

Example 2. The dynamic responses of the piezoelectric hollow cylinder in an axial magnetic field subjected
to only a sudden electric potential on the external surface are considered in the following calculation. The
corresponding boundary conditions are written as

o.(s,7)=0 o,(1,7)=0 (49a)

P(s,7) =0 ¢(1,7) = (1) (49b)

The ratio of internal radius to external radius is taken as s =a/b = 1/2, the dimensionless time
Tl = (I_CSL)TCV = bc_—L;, the dimensionless radial coordinate R = 5= = 7=¢. When the responded time is taken as
71 > 1, because of the small wall thickness, a/b = 1/2, and the effects of wave reflected between the inner-

wall and outer-wall have been produced. From Fig. 4a and e, it is seen that the radial stresses and the
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Fig. 3. Response histories of: (a) dynamic stress g, at R=0, R=0.5 and R =1, where R=(r—a)/(b—a), 11 = Crt/(b— a);
(b) dynamic stress gy at R=0, R=0.5 and R =1, where R = (r —a)/(b — a), 1 = C.t/(b — a); (c) perturbation of magnetic field
vector h,,at R=0and R = 1, where R = (r — a)/(b — a), 11 = Crt/(b — a); (d) dynamic electric displacement D,, at R = 0, R = 0.5 and
R=1, where R= (r—a)/(b—a), tl =Crt/(b—a); (e) dynamic electric potential ¢, at R=0, R=0.5 and R=1, where
R=(r—a)/(b—a), 1l = Cpt/(b— a).

electric potential at the boundaries R = 0,1 satisfy the given boundary conditions. Fig. 4a—e show that
except the points at given boundary conditions, all dynamic responses at other points oscillate dramatically
around the corresponding quasi-static values because of the effects of wave reflected between the inner-wall
and outer-wall. Fig. 4b shows that the amplitude of the hoop compression stress in the piezoelectric hollow
cylinder subjected to only unit electric potential at outer wall is larger than the amplitude of the hoop tensile
stress. Fig. 4¢ depicts the response of the perturbation of magnetic field vector at R =0 and R = 1. From
the curves in Fig. 4c, it is seen that because of the effects of wave reflected the variation of the perturbation
of magnetic field vector is similar to that in Fig. 3c. Comparing Figs. 3c and 4c, it is seen that the
respondent amplitude of the perturbation of magnetic field vector caused by the sudden unit electric po-
tential is larger than that caused by the sudden unit pressure. Fig. 4d shows that the electric displacement
value is negative in the cylinder, and the corresponding absolute value decreases with the increasing of R.
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Fig. 4. Response histories of: (a) dynamic stress g, at R=0, R=0.5 and R=1, where R=(r—a)/(b—a), 11 = Crt/(b — a);
(b) dynamic stress gy at R=0, R=0.5 and R =1, where R = (r — a)/(b — a), 11 = C.t/(b — a); (c) perturbation of magnetic field
vector h,,at R=0and R = 1, where R = (r — a)/(b — a), 11 = Crt/(b — a); and (d) dynamic electric displacement D,, at R =0, R = 0.5
and R =1, where R= (r —a)/(b — a), t1 = Crt/(b — a). (e) Distributions of dynamic electric potential ¢, at t=0.1, t=1.0 and
1 =2.0, where R = (r —a)/(b —a), 11 = Crt/(b — a).

Fig. 4e shows the distribution of electric potential in the piezoelectric hollow cylinder subjected to sudden
unit electric potential at outer wall, which is apparently different from that in the piezoelectric hollow
cylinder subjected to sudden unit pressure as shown in Fig. 3e. From Fig. 4e it is seen that the distribution
of electric potential along the radial direction of the cylinder is weakly non-linear, and it changes as the
respondent time changes.

Example 3. In order to prove further the correctness of analytical results in the paper, omitting the axial
magnetic field load in Eq. (5), the present method can be applied to solve the transient problem of pie-
zoelectric hollow cylinders. For ease of comparison with reference (Ding et al., 2003), the same transient
problem of piezoelectric hollow cylinders no considering an axial magnetic field load is taken and the same
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Fig. 5. Response histories of radial stress, o,, at R = 0.5 (a) and of hoop stress,oy, at R = 0 in piezoelectric hollow cylinders no
considering an axial magnetic field load, where R = (r — a) /(b — a), t1 = Crt/(b — a).

parameters are taken: the ratio of internal radius to external radius s = a/b = 1/2, dimensionless time
1l = (lst;Cv = % and the dimensionless radial coordinate R = = = 7=%. The boundary conditions are ex-
pressed in Eq. (48a,b). From Fig. 5a and b, one can see that the results from the two different methods are

nearly the same.

5. Conclusions

(1) Although the transient responses of coupled fields have been studied by a number of authors, no pub-
lished result can be used for a comparison with the present model. In fact, most of the previous works
have focused on the transient responses of magnetothermoelasticity or electroelasticity. To our knowl-
edge, no detailed report on the dynamic responses of piezoelectric hollow cylinders in an axial magnetic
field is available in the literature. This is apparently due to the fact that the experiment on the dynamic
responses of piezoelectric hollow cylinders in an axial magnetic field remains a formidable task.

(2) From the results and discussions in Example 1(a) it is seen that the results presented in Fig. 2a and b
appears in the feature of the compression waves which is similar as the wave propagation in an infinite
elastic solid with a cylindrical cavity subjected to only a sudden interior pressure (Achenbach, 1973 and
Miklowitz, 1978). The other hand, in Example 3, the transient problem of piezoelectric hollow cylinders
no considering an axial magnetic field load is calculated for simple comparison with reference (Ding
et al., 2003). Therefore, it is concluded that the correctness of the numerical results in this paper is valid.
Thus, the solving method may be used as a reference to solve other dynamic coupled problems in a pie-
zoelectric hollow cylinder in an axial magnetic field, subjected to mechanical load and electric shocks.

(3) Because of the interaction between elastic deformation, electric field and magnetic field, a sudden
mechanical load induces the response of electric displacement and electric potential, and the perturba-
tion of magnetic field vector in a piezoelectric hollow cylinder. Likewise, a sudden electric potential also
causes the dynamic stresses responses, and the perturbation of magnetic field vector in the piezoelectric
hollow cylinder. Thus, applying a suitable electric excitation to a piezoelectric hollow cylinder can con-
trol the responses and distributions of dynamic stresses, and the perturbation of magnetic field vector in
the piezoelectric hollow cylinder.

(4) Utilizing the knowledge of the response histories of dynamic stresses, electric displacements, electric
potentials and perturbations of an axial magnetic field vector in a piezoelectric hollow cylinder, various
electromagnetoelastic elements under mechanical loads and electric potential shocks can be designed
to meet specific engineering requirements.
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